Robust Replication of Volatility and Hybrid Derivatives on Jump Diffusions

Matt Lorig

Based on work with Peter Carr and Roger Lee

Department of Applied Mathematics, University of Washington
Pricing of exotic derivatives: parametric approach

The **parametric approach** to pricing exotic derivatives involves:

- writing a **parametric model** for an underlying S (e.g., Heston, SABR, Hull-White, exponential Lévy),
- **calibrating** the model to liquid calls $C(K)$ and puts $P(K)$,
- using the model and the obtained parameters to price exotics (either analytically or via Monte Carlo).

This approach has a number of **shortcomings**:

- parametric models typically **limited to those that produce closed-form call/put prices**,
- parametric models **cannot fit market data**,
- the models must be **re-calibrated frequently**; calibration is time-consuming.
The **non-parametric approach** to pricing exotics involves:

- writing a **non-parametric model** for an underlying \(S \) (e.g., \(S \) is a positive semimartingale or a continuous positive semimartingale),
- deriving **upper and lower bounds** for exotic derivative prices relative to calls \(C(K) \) and puts \(P(K) \).

This approach has some possible **shortcomings**:

- upper and lower bounds may be **too far apart** for use in practice,
- pricing and hedging strategies **do not allow for dynamic trading of calls and puts**; doing so could narrow no arbitrage bounds.
Pricing of exotic derivatives: semi-parametric approach

The **semiparametric approach** we follow can be outlined as follows:

- write a **semi-parametric model** for an underlying S with **minimal structure**,
- use the structure to give **unique prices and hedges** for exotics **relative** to liquid calls $C(K)$ and puts $P(K)$.

This approach has a number of **advantages**:

- **compared to parametric models**, semi-parametric models are **more flexible** and more likely to fit market data,
- frequent (re-)calibration **not** needed,
- **compared to non-parametric models** **unique prices** (rather than price bounds) are obtained.
Basic assumptions and notation

Throughout this talk, we make the following assumptions:

- no arbitrage,
- no transactions costs,
- zero interest rates.

We fix a maturity date T.

Denote by $S = (S_t)_{0 \leq t \leq T}$ the price of a strictly positive risky asset.

Denote by $X = (X_t)_{0 \leq t \leq T}$ the log price: $X_t = \log S_t$.

Under the above assumptions, put and call prices are given by

$$P(K) = \mathbb{E}(K - S_T)^+, \quad C(K) = \mathbb{E}(S_T - K)^+.$$

Here, \mathbb{E} denotes expectation with respect to the market’s chosen pricing measure \mathbb{P}.

We assume a call and/or put trades at every strike $K \in (0, \infty)$.
Non-parametric pricing of European options

Carr and Madan (1998) show that, if \(f \) can be expressed as the difference of convex functions, then for any \(\kappa \in \mathbb{R}^+ \) we have

\[
f(s) = f(\kappa) + f'(\kappa) \left((s - \kappa)^+ - (\kappa - s)^+ \right) \\
+ \int_0^\kappa dK f''(K)(K - s)^+ + \int_\kappa^\infty dK f''(K)(s - K)^+.
\]

Replacing \(s \) with \(S_T \), setting \(\kappa = S_0 \), and taking an expectation

\[
\mathbb{E} f(S_T) = f(S_0) + \int_0^{S_0} dK f''(K)P(K) + \int_{S_0}^\infty dK f''(K)C(K).
\]

Takeaway: the price of any European claim \(\mathbb{E} f(S_T) \) can be expressed relative to puts and calls on \(S_T \).

This result is completely model-free; it makes no assumptions on the \(S \) process.

To price exotics, we need to impose some structure on \(S \) dynamics.
Semi-parametric model

On a filtered probability space \((\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})\) the asset \(S\) satisfies

\[
dS_t = \sigma_t S_t dW_t + \int_{\mathbb{R}} (e^z - 1) S_t - \tilde{N}(dt, dz),
\]

\[
\tilde{N}(dt, dz) = N(dt, dz) - \nu(dz) dt,
\]

- \(W\) is a **Brownian motion** under \(\mathbb{P}\) with respect to the filtration \(\mathbb{F} = (\mathcal{F}_t)_{0 \leq t \leq T}\).
- \(\tilde{N}\) is a **compensated Poisson random measure** with respect to the pricing measure.

The model is **semi-parametric** in that:

- No parametric model for **volatility process** \(\sigma\) (may be non-Markovian, may experience jumps).
- The volatility process \(\sigma\) evolves **independently** of \(W\) and \(\tilde{N}\).
- We must specify **Lévy measure** \(\nu\) parametrically.
Framework allows for asymmetric implied volatility smiles

Imp. vol as a function of log-moneyness-to-maturity for $T = \{1, 2, 3\}$ months.

$$dX_t = \gamma(Z_t)dt + \sqrt{Z_t}dW_t + \int_{\mathbb{R}} z\tilde{N}(dt, dz),$$

$$dZ_t = \kappa(\theta - Z_t)dt + \delta\sqrt{Z_t}dB_t,$$

$$\nu(dz) = \frac{1}{\sqrt{2\pi}s^2} \exp\left(\frac{-(z - m)^2}{2s^2}\right)dz.$$
Types of claims we consider

By Itô's Lemma, the process $X := \log S$ satisfies

\[dX_t = -\frac{1}{2} \sigma_t^2 dt + \sigma_t dW_t \]

\[- \int_{\mathbb{R}} (e^z - 1 - z) \nu(dz) dt + \int_{\mathbb{R}} z \tilde{N}(dt, dz). \]

We wish to price and hedge claims of the form

Payoff at time $T = \varphi(X_T, [X]_T)$,

$[X]_T = \text{realized quadratic variation of } X \text{ up to time } T$.

Examples

Variance Swap : $\varphi(X_T, [X]_T) = [X]_T$,

Volatility Swap : $\varphi(X_T, [X]_T) = \sqrt{[X]_T}$,

Sharpe Ratio : $\varphi(X_T, [X]_T) = (X_T - X_0)/[X]_T$.

We also consider options on Leveraged ETFs, which are path-dependent claims on X, but whose payoff cannot be written simply as $\varphi(X_T, [X]_T)$.
Pricing exponential claims

We will use exponential claims to construct more general claims

exponential claim payoff: \(e^{i\omega X_T + is[X]_T} \)

To this end, the following proposition will be useful.

Proposition

Define \(u : \mathbb{C}^2 \to \mathbb{C} \) and \(\psi : \mathbb{C}^2 \to \mathbb{C} \) as

\[
\begin{align*}
 u(\omega, s) &:= i \left(-\frac{1}{2} \pm \sqrt{\frac{1}{4} - \omega^2 - i\omega + 2is} \right), \\
 \psi(\omega, s) &:= \int_{\mathbb{R}} \nu(dz) \left(e^{i\omega z + isz^2} - 1 - i\omega(e^z - 1) \right).
\end{align*}
\]

Then the joint characteristic function of \((X_T, [X]_T)\) given \(\mathcal{F}_t \) is

\[
\mathbb{E}_t e^{i\omega X_T + is[X]_T} = \frac{e^{(T-t)\psi(\omega, s) + i(\omega - u(\omega, s))X_t + is[X]_t}}{e^{(T-t)\psi(u(\omega, s), 0)}} \mathbb{E}_t e^{iu(\omega, s)X_T}.
\]
Key ingredients of proof

\(X \) can be separated into a continuous component and an independent jump component

\[
\begin{align*}
\ & \
\text{d}X_t \ &= \ \text{d}X_t^c + \text{d}X_t^j, \\
\text{d}X_t^c \ &= \ -\frac{1}{2}\sigma_t^2 \text{d}t + \sigma_t W_t, \\
\text{d}X_t^j \ &= \ -\int_{\mathbb{R}} (e^z - 1 - z) \nu(\text{d}z) \text{d}t + \int_{\mathbb{R}} z \tilde{N}(\text{d}t, \text{d}z).
\end{align*}
\]

Carr and Lee (2008) show that the continuous component \((X^c, [X^c])\) satisfies

\[
\mathbb{E}_t e^{i\omega (X^c_T - X^c_t) + is([X^c]_T - [X^c]_t)} = \mathbb{E}_t e^{iu(\omega, s)(X^c_T - X^c_t)}.
\]

The jump component \((X^j, [X^j])\) is a two-dimensional Lévy process with joint characteristic exponent \(\psi\)

\[
\mathbb{E}_t e^{i\omega (X^j_T - X^j_t) + is([X^j]_T - [X^j]_t)} = e^{(T-t)\psi(\omega, s)},
\]

The main result follows from the above and algebra.
Proof

Using results from previous page, we have

$$E_t e^{i \omega (X_T - X_t) + is([X]_T - [X]_t)}$$

$$= E_t e^{i \omega (X^c_T - X^c_t) + is([X^c]_T - [X^c]_t)}$$

$$= E_t e^{i \omega (X^j_T - X^j_t) + is([X^j]_T - [X^j]_t)}$$

$$= E_t e^{i u(\omega, s)(X^c_T - X^c_t)}$$

$$= E_t e^{i u(\omega, s)(X^j_T - X^j_t)}$$

$$= E_t e^{i u(\omega, s)(X_T - X_t)}$$

$$= E_t e^{i u(\omega, s)(X_T - X_t) - (T-t)\psi(\omega, s)}$$

$$= E_t e^{i u(\omega, s)(X_T - X_t) - (T-t)\psi(u(\omega, s), 0)}$$

Thus, we obtain

$$E_t e^{i \omega X_T + is[X]_T} = e^{-i u(\omega, s) X_t} e^{i \omega X_t + is[X]_t} e^{(T-t)\psi(\omega, s)} E_t e^{i u(\omega, s) X_T}.$$
Pricing power-exponential claims

We can use previous result to price power-exponential claims

\[
E_t X^n_T [X]^m_T e^{i\omega X_T + is[X]}_T
\]

\[
= (-i\partial_\omega)^n(-i\partial_s)^m E_t e^{i\omega X_T + is[X]}_T
\]

\[
= (-i\partial_\omega)^n(-i\partial_s)^m \frac{e^{(T-t)\psi(\omega,s)+i(\omega-u(\omega,s))X_t+is[X]}_t}{e^{(T-t)\psi(u(\omega,s),0)}} E_t e^{iu(\omega,s)X_T}
\]

\[
=: F(\omega,s,X_t,[X]_t)
\]

\[
= \sum_{j=0}^{n} \sum_{k=0}^{m} \binom{n}{j} \binom{m}{k} (-i\partial_\omega)^j(-i\partial_s)^k F(\omega,s,X_t,[X]_t)
\]

\[
\mathcal{F}_t\text{-measurable}
\]

\[
\times E_t (-i\partial_\omega)^{n-j}(-i\partial_s)^{m-k} e^{iu(\omega,s)X_T}
\]

Eur. claim
Example: variance swap

We plot $g(\log s)$ as a function of s where

$$
Eg(\log S_T) = E[\log S]_T, \quad \nu(dz) = \lambda\delta_m(z)dz, \quad T = 0.25.
$$

Left : $\lambda = 1.00, \quad m = \{-2.00, 0, 2.00\}$,
Right : $m = -2.00, \quad \lambda = \{1.00, 2.00, 3.00\}$,
Pricing fractional powers of $[X]_T$

Using the following integral representation

$$v^r = \frac{r}{\Gamma(1 - r)} \int_0^\infty dz \frac{1}{z^{r+1}} \left(1 - e^{-zv}\right), \quad 0 < r < 1,$$

we have (taking $X_0 = 0$ for simplicity)

$$\frac{\Gamma(1 - r)}{r} E[X]^r_T$$

$$= \int_0^\infty dz \frac{1}{z^{r+1}} \left(E1 - Ee^{-z[X]_T} \right)$$

$$= E \int_0^\infty dz \frac{1}{z^{r+1}} \left(e^{iu(0,0)X_T} - \frac{e^{T\psi(0,iz)}}{e^{T\psi(u(0,iz),0)}} e^{iu(0,iz)X_T} \right)$$

$$= \frac{\Gamma(1 - r)}{r} Eg(X_T),$$
Example: volatility swap

Effect of jump size

Effect of jump intensity

We plot \(g(\log s) \) as a function of \(s \) where

\[
\mathbb{E}g(\log S_T) = \mathbb{E}\sqrt{[\log S]_T}, \quad \nu(dz) = \lambda \delta_m(z)dz, \quad T = 0.25.
\]

Left: \[\lambda = 1.00, \quad m = \{-1.25, 0.00, 1.25\}, \]
Right: \[m = -1.25, \quad \lambda = \{1.00, 2.00, 3.00\}, \]
Pricing ratio claims $X_T / ([X]_T + \varepsilon)^r$

Using the integral representation

$$\frac{1}{(v + \varepsilon)^r} = \frac{1}{r \Gamma(r)} \int_0^\infty dz \, e^{-z^{1/r}(v + \varepsilon)}, \quad r > 0,$$

we have

$$\mathbb{E} \frac{X_T e^{ipX_T}}{([X]_T + \varepsilon)^r} = \frac{1}{r \Gamma(r)} \int_0^\infty dz \, \mathbb{E} X_T e^{ipX_T - z^{1/r}([X]_T + \varepsilon)}$$

$$= \frac{1}{r \Gamma(r)} \int_0^\infty dz \, e^{-z^{1/r}\varepsilon} (-i \partial_p) \mathbb{E} e^{ipX_T - z^{1/r}([X]_T + \varepsilon)}$$

exponential claim

$$= \frac{1}{r \Gamma(r)} \mathbb{E} \int_0^\infty dz \, e^{-z^{1/r}\varepsilon} (-i \partial_p) \frac{e^{T\psi(p, iz^{1/r})}}{e^{T\psi(u(p, iz^{1/r}), 0)}} e^{iu(p, iz^{1/r})X_T}$$

$$=: \mathbb{E} g(X_T).$$
Example: realized Sharpe ratio

\[\lambda = 1.0, \ m = -0.675 \]

\[\lambda = 2.0, \ m = -0.675 \]

\[\lambda = 1.0, \ m = 0.675 \]

\[\lambda = 2.0, \ m = 0.675 \]

We plot \(g(\log s) \) as a function of \(s \) where \(\varepsilon = 0.001 \) and

\[\mathbb{E}g(\log S_T) = \mathbb{E}X_T/\sqrt{[\log S]_T} + \varepsilon, \quad \nu(dz) = \lambda \delta_m(z)dz. \]
Leveraged ETFs

The relationship between an Leveraged Exchange Traded Fund (LETF) $L = e^Y$ and the underlying Exchange Traded Fund ETF $S = e^X$ is

$$\frac{dL_t}{L_{t-}} = \beta \frac{dS_t}{S_{t-}},$$

where $\beta \in \{-2, -1, 2, 3\}$ is the leverage ratio.

The value of Y_T depends on the path of X as follows

$$dY_t = dY^c_t + dY^j_t,$$

$$dY^c_t = \beta dX^c_t + \frac{1}{2} \beta (1 - \beta) d[X^c]_t,$$

$$dY^j_t = -\int_{\mathbb{R}} \left(\beta (e^z - 1) - \log \left(\beta (e^z - 1) + 1 \right) \right) \nu(dz) dt$$

$$+ \int_{\mathbb{R}} \log \left(\beta (e^z - 1) + 1 \right) \tilde{N}(dt, dz).$$
Characteristic Function of Y_T

Despite dependence on path of X we can relate the characteristic function of Y_T to the characteristic function of X_T only:

Proposition

Define $\chi : \mathbb{C} \to \mathbb{C}$ by

$$\chi(q) := \int_{\mathbb{R}} \nu(dz) \left((\beta(e^z - 1) + 1)^{iq} - 1 - iq\beta(e^z - 1) \right).$$

Then the characteristic function of $(Y_T - Y_t)$, conditional on \mathcal{F}_t, is

$$\mathbb{E}_t e^{iq(Y_T - Y_t)} = \frac{e^{(T-t)\chi(q)}}{e^{(T-t)\psi(u(q\beta, q\frac{1}{2}\beta(1-\beta)), 0)}},$$

where u and ψ as defined previously.

The path-dep. claim = $e^{(T-t)\chi(q)}$

Eur. claim = $\mathbb{E}_t e^{iu(q\beta, q\frac{1}{2}\beta(1-\beta))(X_T - X_t)}$,

\mathcal{F}_t-measurable
Proof

Using

\[\mathbb{E}_t e^{i q (Y^j_{T} - Y^j_{t})} = e^{(T-t) \chi(q)}, \]
\[\mathbb{E}_t e^{i \omega (X^j_{T} - X^j_{t}) + i s ([X^j]_T - [X^j]_t)} = e^{(T-t) \psi(\omega,s)}, \]

and independence of continuous and jump components, we have

\[\mathbb{E}_t e^{i q (Y_{T} - Y_{t})} = \mathbb{E}_t e^{i q (Y^c_{T} - Y^c_{t})} \mathbb{E}_t e^{i q (Y^j_{T} - Y^j_{t})} \]
\[= \mathbb{E}_t e^{i q \beta (X^c_{T} - X^c_{t}) + i q \frac{1}{2} \beta (1-\beta) ([X^c]_T - [X^c]_t)} e^{(T-t) \chi(q)} \]
\[= \mathbb{E}_t e^{i u (q \beta, q \frac{1}{2} \beta (1-\beta)) (X^c_{T} - X^c_{t})} e^{(T-t) \chi(q)} \]
\[= \mathbb{E}_t e^{i u (q \beta, q \frac{1}{2} \beta (1-\beta)) (X^c_{T} - X^c_{t})} \mathbb{E}_t e^{i u (q \beta, q \frac{1}{2} \beta (1-\beta)) (X^j_{T} - X^j_{t})} e^{(T-t) \chi(q)} \]
\[= \mathbb{E}_t e^{i u (q \beta, q \frac{1}{2} \beta (1-\beta)) (X^c_{T} - X^c_{t})} \mathbb{E}_t e^{i u (q \beta, q \frac{1}{2} \beta (1-\beta)) (X^j_{T} - X^j_{t})} e^{(T-t) \chi(q)} \]
\[= \mathbb{E}_t e^{i u (q \beta, q \frac{1}{2} \beta (1-\beta)) (X^c_{T} - X^c_{t})} e^{(T-t) \chi(q)} \]
\[= \mathbb{E}_t e^{i u (q \beta, q \frac{1}{2} \beta (1-\beta)) (X^c_{T} - X^c_{t})} e^{(T-t) \psi(u(q \beta, q \frac{1}{2} \beta (1-\beta)),0)} \]
\[= \mathbb{E}_t e^{i u (q \beta, q \frac{1}{2} \beta (1-\beta)) (X^c_{T} - X^c_{t})} e^{(T-t) \psi(u(q \beta, q \frac{1}{2} \beta (1-\beta)),0)}. \]

(by (1))

(by (2))
Pricing general claims on Y_T

Let $\hat{\varphi}$ be the (possibly generalized) Fourier transform of φ

$$\hat{\varphi}(q) = \frac{1}{2\pi} \int_{\mathbb{R}} dy \, e^{-iqy} \varphi(y).$$

The price of a claim with payoff $\varphi(Y_T)$ can be obtained as follows

$$E_t \varphi(Y_T)$$

$$= \int_{\mathbb{R}} dq \, \hat{\varphi}(q) e^{iqY_t} E_t e^{iq(Y_T - Y_t)}$$

$$= \int_{\mathbb{R}} dq \, \hat{\varphi}(q) e^{iqY_t} \frac{e^{(T-t)\chi(q)}}{e^{(T-t)\psi(u(q\beta,q\frac{1}{2}\beta(1-\beta)),0)}} E_t e^{iu(q\beta,q\frac{1}{2}\beta(1-\beta))(X_T - X_t)}$$

$$=: E_t g(X_T; X_t, Y_t),$$

Eur. claim
Example: Calls on L_T

We plot $g(\log s; x, y)$ as a function of s where

$$
\mathbb{E}g(\log S_{T}; X_0, Y_0) = \mathbb{E}(L_T - K)^+, \quad \nu(dz) = \lambda \delta_m(z)dz.
$$

where $K = 1.0$, $T = 1/4$, $X_0 = Y_0 = 0.0$, $m = -0.4$ and $\lambda = 2.0$.

Left : $\beta = \{1.0, 2.0, 3.0\}$,
Right : $\beta = \{-1.0, -2.0, -3.0\}$,
Hedging Exponential claims

The value of an exponential claim at any time \(t \leq T \) is

\[
\mathbb{E}_t e^{i \omega X_T + is[X]_T} = A_t Q_t^{(u)}, \quad u \equiv u(\omega, s),
\]

where we have defined

\[
A_t := e^{i(\omega-u)X_t + is[X]_t} \frac{e^{(T-t)\psi(\omega,s)}}{e^{(T-t)\psi(u,0)}},
\]

\[
Q_t^{(u)} := \mathbb{E}_t e^{iuX_T}.
\]

Strategy for deriving hedging strategy is to take the differential

\[
d(A_t Q_t^{(u)}) = A_t dQ_t^{(u)} + Q_t^{(u)} dA_t + d[A, Q^{(u)}]_t,
\]

and show that the right-hand side can be expressed as a self-financing portfolio of traded assets’’

- the stock \(S \)
- zero-coupon bonds \(B \)
- European exponential claims \(Q^{(q)} \) where \(q \in \mathbb{C} \).
Key ingredients in derivation

- Jump in value of European claim $Q_{t}(q) = E_t e^{i q X_T}$ is

$$\Delta Q_{t}(q) = Q_{t-}(e^{i q \Delta X_t} - 1) + \text{jump due to } \Delta \sigma_t.$$

- Then we have the following symmetry

$$R_{t}^{(q)} Q_{t}^{(q)} = R_{t}^{(-i-q)} Q_{t}^{(-i-q)},$$

where the process $R^{(q)}$ is given by

$$R_{t}^{(q)} = e^{-i q X_t + (T-t)\psi(-i-q,0)}.$$
Explicit strategy

Define $\Gamma^{(u)}$ and $\Omega^{(q)}$ where $q \in \mathbb{C}$ by

$$d\Gamma^{(u)}_t := A_{t^-}Q^{(u)}_{t^-} \int_{\mathbb{R}} \left(e^{i\omega z + is^2} - e^{iuz} - i(\omega - u)(e^z - 1) \right) N(dt, dz),$$

$$d\Omega^{(q)}_t := R^{(q)}_{t^-}Q^{(q)}_{t^-} \int_{\mathbb{R}} \left(-e^{iqz} + 1 + iq(e^z - 1) \right) N(dt, dz).$$

Let $q \in \mathbb{C}^m$. Suppose there exists predictable $H \in \mathbb{C}^m$ satisfying

$$0 = \Delta \Gamma^{(u)}_t + \sum_{j=1}^{m} H^{(j)}_t \left(\Delta \Omega^{(q_j)}_t - \Delta \Omega^{(-i-q_j)}_t \right).$$

Then we have (traded assets in blue)

$$d(A_t Q^{(u)}_t) = A_t dQ^{(u)}_t + i(\omega - u)\frac{A_{t^-}Q^{(u)}_{t^-}}{S_{t^-}}dS_t$$

$$+ \sum_{j=1}^{m} H^{(j)}_t \left(R^{(q_j)}_{t^-} dQ^{(q_j)}_t - R^{(-i-q_j)}_{t^-} dQ^{(-i-q_j)}_t \right)$$

$$+ \sum_{j=1}^{m} H^{(j)}_t (1 - 2iq_j)\frac{R^{(q_j)}_{t^-} Q^{(q_j)}_{t^-}}{S_{t^-}}dS_t.$$
Conclusion

- We have presented a **semiparametric model** for an asset S
 - The volatility process σ is **non-parametric**; may be non-Markovian (e.g., driven by fBM) and may experience jumps
 - The jumps of X must be specified **parametrically** via Lévy measure ν
 - Model allows for **asymmetric implied volatility** smiles
- We have shown how to price path-dependent claims relative to European calls and puts
 - variance-style claims
 - hybrid claims on price and volatility
 - options on LETFs
- We have shown how to **replicate** exponential claims with a self-financing portfolio of traded assets.